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SELF-SIMILAR SOLUTIONS OF THE BELLMAN EQUATION 

FOR OPTIMAL CORRECTION OF RANDOM DISTURBANCES 
PMM vol. 35, Np2. 1971, pp. X33-342 

F. L. CHERNOUS’KO 

(Receive %&?l4, 1970) 6 

A nonlinear second order partial differential equation (Bellman equation) is solved for 
some characteristic problems of optimal correction of motion in the presence of random 
distrubances and integral constraints on the control function. 

For these problems, classes of self-similar (invariant group) solutions of the Bellman 

equation are computed. Some exact analytical solutions are obtained. 

1. Pormulrtion of problem. Let the motion of the system be described by 

the following equation : 

dx / dt = fz (t)u + b (t)E, 5 (to) = 20 (1-l) 

Here t is time, x is the scalar phase coordinate, u is the control function, E is the 
random disturbance which is represented by white noise of constant intensity, a (t) and 

b (t) are given functions of time which have the meaning of control efficiency and 
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intensity of disturbance.respectively, i!s andx, are incidental conditions. The problem 
consists of determining the control which satisfies the constraint 

T 

SI 1 u mdt<90t m>O, 90>0 (1.2) 

1. 

and which minimizes the mathematical expectation. of the following function of the 
phase coordinate at the end of the process : 

J = F (z (T)) (1.3) 

Here T is the given time of process termination. q. is a given number, m is a fixed 
parameter. 

The function F (x) is a measure of deviation of the system from zero. Let us assume 
that it has even properties, that it is nonnegative and strictly monotonic, namely : 

F(s)= F(-z), F(O)=O! F(s)>0 (zS.9 F’(z)>0 +>!I (1.4) 

where the prime indicates a derivative. The control u will be determined in the form 

of a system, i. e. as a function of arbitrary initial conditions to, z. and qo,where t,<T: 

and go > 0. 
It is assumed that these variables can be measured exactly at any given instant. We 

note that the case m = 1 corresponds to a control of motion with a constraint on fuel 
consumption, while the case m = 2 corresponds to a control with a constraint on energy 

(in particular, control by means of low thrust). 
Let us introduce the variable Q which has the significance of available capability for 

control, From relationship (1.2) we obtain the equation and the boundary conditions for 

’ in the form Q / dt = _ 1 u Jm, 9 (to) = 90 r, 0, 4(T)>O (1.5) 

Without destroying generality we can assume that a (t) > 0 and b (t) > 0 for all t.. 
If any of these functions assume a negative value for some t , then for this t we can 

change the sign of the function u or E in Eq. (1.1). All functions which are used are 
assumed to have the required number of derivatives. 

We note that the described formulation of the problem is typical for a fairly wide class 
of problems of optimal control. In fact, let the motion be described by the general non- 
linear system ax I dt = f (X, u, E, t) (1.6) 

where X is the vector of phase coordinates, U is the vector of control functions, E is the 
vector of disturbances and f is a given vector function. let us denote by Y = F,, (X, t) 

the vector of independent first integrals of system (1.6) for U = E = 0, then the follow- 
lng equality is valid : a~,, (X, t) 

aX f(X, o,o, t)+ aFoLfy Lo (1.7) 

where 8Fo I 8X is a square matrix of partial derivatives and 8Fol& is a vector. bet the 
control U and the disturbances E ln the system (1.6) be small in magnitude. Then we 
obtain fr;; Eqs. (1.6). (1.7) 

dt = g [I (X, u, 49 t) -:f (X9 0, 0, t)] =@$)Lf+cs$& (1.8) 

Here the matrices of partial derivatives should be taken for U = 0, E = 0 and X = X0 (t) 

where X0 (t) is some reference trajectory which plays the role of undisturbed motion, i. e. 
it is any perticular solution of system (1.6) for U = 5 = 0 . In this connection the matrix 
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coefficients for U and f in system (1.8) are functions of t only, and this system is the 
vector analog of Eq. (1.1). If the criterion which is to be minimized depends only on 

one component of vector Y, then we can examine separately only one equation from 
the system (1.8). i.e. the equation (1.1). 

For example, let us examine the similarity problem of correction of one-dimensional 

motion of a point. The equations of motion have the form 

dX~ldl = x2, dX,/dt= u+ 5 (1.9) 

where X1 is the coordinate, X2 is the velocity, u is the control force, E is the disturb- 

ance force. Let us introduce a new variable (2’ is the instant of process termination) 

5=x,+ (T- t)XI (1.10) 

It is easy to verify that this variable is the first integral of system (1.9) for u L= E = 0. 
From relationships (1.9) and (1.10) we obtain 

dz/dt== (I’-t)u+‘(T-t)c (i.ii)A 

If the criterion which is to be minimized at the end of the process depends only on the 
coordinate X1 (I’), then by virtue of the relationship, X,(T) = z(T), we can examine in- 

stead of system (1.9). one equation (1.11). Under corresponding conditions and constraints 
on the control we arrive at the problem (l.l)-(1.3) formulated above. 

2. Bellman equation and boundary conditlonr. Let US designate by 
s (t, 2, q) the minimum value of the functional, i&e. of the mathematical expectation 
of function (1.3). which can be achieved for initial conditions t,, = t, z. = z, go = 4’ 

in the problem (l.l)-(1.3). It is apparent that always 5’ > 0. 
At first let us examine the case 0 <m < 1. Let the control u (t) differ from zero only 

in the interval [tl - e, tll and be equal to e-l in this interval. In this connection e > 0 

and tl < T. For e -t 0 the control tends toward the delta function 6 (t - tl) . It is evi- 

dent from EQ. (1.1) that this leads to a finite jump of the phase coordinate 3 (t) by the 

quantity a (tr) at the instant tl. However, the integral (1.2) for this control tends to zero 
for e - O,.if m < i. 

In this manner a control of the type of a delta function does not lead an expenditure 

of the capability q for m < 1. It follows from this, that for any q. > 0, any t,, z. and 
any realization of the random process E (t) it is possible to achieve the equality z (I”)=0 

by means of a control impulse at the end of the process, i. e. 

u (t) = - I (T - 0) u-1 (T) 6 (t - T) (2.1) 

where I (2' - 0) is the value of the phase coordinate directly before the application of 
the impulse. The control (2.1) ensures an absolute (zero) minimum of the functional to 
be minimized (mathematical expectation of function (1.3)); Therefore this control is 

optimal, but of course not unique. If a (2') = 0, the control (2.1) loses its meaning. 
However, if function a (t) is different from zero for t < T, then it is possible to construct 
a minimizing sequence of impulse equations which also realizes a zero minimum of the 

functional. In this manner for the case m < 1 the problem (l.l)-(1.3) is solved trivially 
and here S (t, z, q) E 0 for t < T. 

From now on we shall assume m > 1 . At first let us examine the case m > 1. 
Taking into account Eqs. (1.1). (1.5). we construct the Bellman equation for the function 

s Cl1 
4 + min, [a (t) US, - 1 u 1’” S,] + f bs (t) S,, = 0 (2.2) 
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Subscripts associated with S denote partial derivatives. We note the following properties 
of function S which result from the formulation of problem (1. l)-(1.3) and properties 

(lo4) S (t, 5, q) = S (t, -z, q), sign S, = sign z, S, < 0 (2.3) 

The first property expresses the evenness of function S. The second and third properties 
follow from the fact that the greater the initial deviation 1 z,, 1 in (1.1) and the smaller 
the reserve of capability q. in (1.2). the greater will be the final deviation ( z (T) 1’ , 
for other conditions being equal. The minimum with respect to u in (2.2) is reached 

for u = - [a(t)S,/(- mSp)]r@-r)signz (2.4) 
After computation of the minimum taking into account (2.3), (2.4), Eq. (2.2) takes the 

following form in the region 5 > 0 : 

S*+'/zb~(t)S,,+(m-~)[a(t)S,/(-~s*)j~~~~-~~S*=O (2.5) 

On the boundary q = 0 the function S has a singularity. Let us fix t < T, z > 0 
and let us take the limit q. = q --+ 0, a ssuming that almost everywhere a > 0 and 
S, > 0. Then the optimal control u of the problem (l.l)-(1.3) in the interval [t, T] 
will tend to zero. Here with respect to order of magnitude 1 u jm -q. Comparing this 

relationship with Eq. (2.4), we obtain 

1 s, ( = 0 (q(‘-m@), q -+ 0 (2.6) 

It is convenient to make a substitution of variables (it is assume that b > 0) 
T 

-c = s b2 (tl) &,, Pm = 4 
t 

(2.5) 

It follows from (2.6) and (2.7) that the derivative of S, is bounded for p -+ U, and in 
the new variables now the function S (z, z, p) does not have a singularity for p -+ 0. 
Equation (2.5) in variables (2.7) takes the form 

- m/(m-1) 
s, =+s,, + (;b-&?)p [qfq s,, m>i (2.8) 

P 

The following initial and boundary conditions for the function S (z, 5, p) follow from 

the relationships (1.3). (2.3) and (2.7) : 

S (0, 5, P) = F (4, S, (r, 0, P) = 0 (2.9) 

For p = 0 Eq. (2.8) transforms into the usual equation of thermal conductivity. For 
conditions (2.9) the solution of this equation has the form 

do 

s (Z, rc, 0) = + \ exp [- (5-z1)2 F (s,)dx, Bt 1 XT 1, 
(2.10) 

Here the evenness of the function F (5) is utilized. We note that solution (2.10) corre- 
sponds to uncontrolled motion. The capability of control p is equal to zero. In this 
manner the problem has been reduced to the determination of function S (z, 2, p) in 

the region D = {t > 0, z > 0, p > 0) from Eq. (2.8) and boundary conditions 

(2.9), (2.10) on the boundaries of the region. Strictly speaking, the relationship (2.10) 
is not a boundary condition, because it follows from Eq. (2.8) itself. We can show that, 

generally speaking, there are enough given conditions in order to solve the problem in 
steps with respect to Z in the direction of increasing z, for example by the finite differ- 
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ence method. 
A difficulty is encountered for small T, because for T - 0 we have S --, F (z) and 

therefore S, -) 0. In this connection the second term in the right side (2.8) tends to 00 
for z w 0. Let us find the asymptotic solution of Ee(2.8) for small Z. The first term in 
the right side of (2.8) tends to F” (5) / 2 for z - 0. This term is bounded and therefore 
it can be neglected in comparison to the second term. Then Eq. (2.8) takes the form 

(m - 1) p 
‘7 = rnbls (7) [ 

a~ (r) F’ (z) 1 m/P-1) 

- 5 
SP, t-0 (2.11) 

where the derivative Sx is replaced by its limiting value F’(z). The solution of Ee(2.11) 
which satisfies the initial condition (2.9) is sought in the form 

S (r, z, p) = F (z) - pF’ (2) fr (r), fi (0) = 0 (2.W 

Substituting Eq. (2.12) into (2.11). we obtain the equation for the determination of 
function 4 dfl m- 1 - = - a,ww (r) bl-2 (q f,--w-1, (q 

dr m 

Integrating this equation with the initial condition fi (0) = 0, we obtain 

fl (r) = [- “‘~~~~~~I:‘)d~~~m-l’ia 

6 
(2.13) 

Relationships (2.12) and (2.13) determine the asymptotics of function S for ? -, 0. and 
make it possible to “retreat” from the plane z = 0, providing a solution for smallr > 0, 
which is important for numerical computation. Having determined the solution of the 

boundary value problem (2.8)-(2. lo), it is then possible to find the system of optimal 
control. According to Eqs. (2.4). (2.7) we have 

u (t, 2, P) = - p [- al tT) S, I ~,p(m-1) tt > 0). u (r, - t, p) = - u (r, 2, P) (2.14) 

3. The ~816 m = 1. The important case n = 1 requires special examination 
because equations in Sect.2 contain indeterminacies for IIZ + 1. We introduce the 
notation Q = a, (Wx + S, (3.1) 
and rewrite Eq. (2.8) in the form 

(3.2) 

Let us go to the limit for na +I -I- 0, assuming that the function &! for rtt = 1 is suf- 

ficiently smooth and taking into account that S, < 0. If in some point Q > 0, then 
the limit of the right side of Eq. (3.2) for m --f 1 turns out to be equal to infinity, which 
has no meaning. Therefore we have Q < 0 for in = 1 everywhere in the region D. 

Let us denote by D, that part of region D where Q ( 0, and by D, the remaining part, 
where Q = 0. In the region D,, going to the limit for m + 1 in Eq, (3.2), we obtain 

& = i/ssxx, Q=al(t)Sx+Sp<O ,inDl (3.3) 
In the region D, we have Q s 0, in which case it follows from (3.1) that 

S (z, z, p) = G [z - a, (t)p, ~1, Q = 0 in DZ (3.4) 
where G is an arbitrary function of two variables,subject to determination. 

Let us denote by r. the boundaryofregions D,and D,. If the function S (i, 5, p) has 
been found in region D,. then on the boundary I?, in accordance with continuity of func- 
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tion 8, we shall have the initial condition s = G on r . From this condition the 
function G and the complete solution (3.4) is determined in region D,. For the solution 

of Eq. (3.3) in region D, it is necessary to give two boundary conditions on the unknown 
boundary I’ . One condition, Q = 0 on I’ , follows from the continuity of Q on I’. In 

order to obtain the second condition, we differentiate both parts of Eq. (3.2) with respect 
to x and then set Q = 0. We obtain 

(3.5) 

Equation (3.5) is valid for m > 1 on the surface Q = 0, which for m -+ 1 becomes 

the boundary r. But for m - 1 the left part of relationship (3.5) tends to zero on J?, 
because in region D, which is adjacent to r, Eq. (3.3) is identically satisfied. Therefore, 

going to the limit for m -+ 1, we obtain from (3.5) that QT = 0 on I?. Analogously 

Q, = 0 on r. However, only one of the two conditions Qx = 0 and Q, = 0 is inde- 
pendent, because Q = 0 on I?. 

In this manner, for m = 1 the wanted function S satisfies Eqs. (3.3) and (3.4) in 
regions D, and D,. On the boundary I? between these regions S is continuous and satis- 
fies the conditions 

Q = a, (t) S, + S, = 0, Q, = al (z) S,, + S,, = 0 on r (3.6) 

Furthermore, conditions (2.9). (2.10) are valid on the boundaries of region D. From the 
second condition (2.9) and the inequality 8, < 0 it follows that Q ( 0 for x = 0, 
i. e. the plane x = 0 belongs to region D,. We note also that p = 4 for m = 1 
according to (2.7) and that b, (t) does not enter into the formulation of the problem 

(3.3). (3.4), (3.6). 
Regions D, and D2 have a simple meaning. From (2.14) for m - 1 it is easy to obtain 

that u = u in the region D,, i.e. in region D1 uncontrolled motion takes place under the 

influence of only random Jistrubance. In the region DZ , on the other hand, impulsive 

correction is made. In thl, connection u <O, because ~20 in the entire region ‘D, see 

P 

l-\ \ 

1 4 

(2.14). It follows from equations (1.1) and (1.5) that 
for impulsive correction (U is a delta function of time) 

DZ 

L$ 
in the case m = 1 and u < 0 the quantity x - a (t) Q 
does not change at the instant of correction. Consequent- 
ly, the argument x - al (r) p of function G in (3.4) also 

Dt J will not change. That is, in the region DZ the phase point 
(t, 5, p) moves along the characteristic of equation 

Q = 0 in the process of correction. This is represented 

qualitatively in Fig. 1, where the section of region D by 

Fig. 1 
the plane z = const is shown. The parallel straight 
lines in Fig. 1 are characteristics 5 - al (T) p = COnst , 

on which the function S is constant in region 03. If the 

phase point (7, x, P) is in the region D1, then u = 0. If, however, (T, I, p) is located in 
Dz, then the control represents an impulse which instantaneously displaces the phase point 
along the straight lines (Fig.1) in the direction indicated by the arrows (in the direction 

of decreasing I and p) to the boundary I? or to the boundary of the region D. It is appar- 
ent that for the design of the optimal control system for rn = i it is sufficient to deter- 
mine the boundary I’. 
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We note one simple case which allows a simple exact solution, Let a (T)), a (t) for 
t < T, i.e. the effectiveness of the control at the end of the process is maximal. Then 
the optimal control apparently represents an impulse delivered at the instant 7’ - This 
impulse decreases the final deviation 1 I (T) I to the extent allowed by the control capa- 
bility. 

Using the notation of Sect. 1, we have 

u (t) = Is (Tf - 2 (T - 0)l u-1 (T) 6 (t - 27 f3.7) 
z(T) = max fl z (T - 0) 1 - D (T) qO, 01 sign z (T - 0) 

In the notation of (2, ‘7) it follows from Eqs. (3.7) that for t -+ + 9 we obtain 

S (t, z, p) = F {max [I - aI (0) p, O]}, x & 0, T -t -I- 0 (3.8) 

Here the properties (1.4) have been utilized, The control relationship (3.7) shows 
that here the region 0, degenerates into the plane r = 0 on which S experiences a 
jump from the value F (2) to the value (3.3). The entire region L) for z > 0 will be 
region Dr. In region DI we find the function S by writing the solution of (3.3) with the 
initial condition (3.8) and the symmetry condition (2.9) 

x F (Xl - =1 (0) PI &* P ,, 0, 7 > 0 Wf 

In order to check the inequality Q < 0, we substitute solution (3.9) into Eq. (3.1) 
m 

Q=-& 1 I [a1 (r) - a1 (a)] exp [ (2 - xly 
- -i&-- 1 - I@l(O) + at@)1 x 

adofp 

From conditions (1.4) and a, (0) 3 al (z) > 0 it follows that Q < 0 in the region &, so 
that Ea. (3.9) in fact gives a solution of the problem. 

4. Sllf-rfmllrr solutions, Let the following equations be satisfied for 

where 12, A, k are constants. In particular, if functions a (t) and b (t) in Eq. (1.1) 
have the form 

a (t) = ljll (T - t)“, b (t) = B, (T - t)P 

where A,, Br, a, p are constants, then after substitution (2.7) we arrive at the condi- 
tion (4. I) for 

i% = la -+- 2 (1 - m)m-yl (q3 + i)-’ 
If conditions (4.1) are satisfied, then Eq. (2.8) and boundary conditions (2,9), (2. IO) for 
the case m > 1, and also relationships (3.3) and (3.4) for M = 1 will be invariant 
with respect to the following single-parameter group of expansion transformations: 

cc+ cx, z -+ C%, p --f C-‘pi, S -, C”S, r = 2k _i 1 - Zm- (4.2) 

with the parameter C. Consequently, the boundary value problems in Sects.2 and 3 have 
self-similar solutions which are invariant with respect to the group of transformations 
(4.2). These sblutions can be sought for example in the following form: 
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or in other equivalent forms. Substituting relationships (4, l), (4.3) into Eq. (2,8) and 

equalities (2.9), (2. lo), (2.12), (2.13). we obtain an equation, boundary conditions and 
asymptotic representation for function J, (y, 2) in the form 

?zqJ - zq?, + ryqv = 1/7,, - 2 I(m - If / ndy f$p f 6$\tP”“-‘1 

1PL (Ys 0) = 0, $ (0, 2) = k (2) (4.4) 

rp(&Z)==Z”[l- y(kay”l_i)(m-l)‘mj (r-+co,yz’=const) 

Here the following notation is introduced: 
0 

= I- (n -I- 1) 
1/2;; exp -I” - f~-,L-.l(~) + &l-l t- 211 (4.5) 

where L)++ are parabolic cylindrical functions @] by which the integral (4.5) is ex- 

pressed. For natural n Eq, (4.5) can be simplified fz] and assumes the form 

2 + 

Erfc z = [ e-t’& = _!?i _ \ e-t2 & 
f? 

(n Ii, 2,. I .) (4.6)' 
f b 

The boundary value problem (4.4) is reduced to the determination of function 9 (y, z) 
in the region y > 0 and z 2 0. This problem is much simpler than the initial problem 

(2,8)-(2. lo), because it contains only two lndependent variables. 
Analogous simplifications are carried out for the case nz T= 1. Substituting Eqs.(4.1) 

and (4.3) for M = 1 into relationships (3.3), (3.4). (3.6), (2.9). (2.10) we have the fol- 
iowing boundary value problem : 

n* - z& + (2k - 1) J,P& = qz,, Q” < 0 in Dr” 

q = Go@-- y), Q" = 0 in D:O (4.7) 

QO=Qzo.=O on To, $Jz (y, 0) = 0, 4 (0, 2) = h,(z) 

9 (y? 2) = Z~ for 2 3 30, ZJZ*~-~ = const, Q”= YZ-F-%? 

Here D,” and Ds* are regions of the quadrant y > 0, z ,> 0 in which the conditions 
Q” < 0 and Q” = 0 are satisfied, respectively, Here r” is the unknown boundary which 
separates these regions. An arbitrary function of one variable is denoted by Go. This 
function is subject to determination. From the inequality s, ( 0 it follows that 
&, < 0 everywhere. Therefore on the straight line z = 0 where 4, = 0 we have 
0” < 0 in accordance with (4.8). Consequently, the region &* contains the straight 
line 2 = 0. 

The boundary value problem with an unknown boundary (4.7) allows an exact analyt- 
ical solution for k = 0 and Ic = l/s. If lli = 0 and M = 1 in the relationship(4,1), 
the condition ai (t) = .&I is satisfied. In this connection it follows from Sect.3 that 
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solution (3.9) is appropriate. Passing in (3,9) to variables (4.3) for .k ‘= 0 and m = 1, 
we obtain the following exact solution of problem (4.7) for k =i; 6: 

m 

$(y, 2) =&l pp -(z2-tq- exp-(z2+f)*]IY-tI”dt (4.8) 
21 

The region D,” in which the solution (4.6) is applicable and the inequality Q0 ( 0 
is satisfied, coincides here with the entire quadrant y > 0, z > 0. ‘I%e region ns” 
degenerates going to infiiity. 

Let us examine the case k = r/s_ For k = ‘la we obtain for the region &” from 

(4.7) 
nil, - 2% = L ~&O)=O (4.9) 

By a direct verification it is easy to become convinced that the function h, (z) from 
(4.5) satisfies Eqs. (4.9). Consequentiy, the solution in the region -Bra has the form 

‘it, (?.A 2) = &i @)gzz (~1 (4.10) 

where g, so far is an arbitrary function. Substitution (4.10) into the boundary condition 
(4.7) on the boundary I’” yields 

h,‘q, .+ Iz,g,’ = 0, Iz,“g, + h,‘g,’ = 0 (4.11) 

Primes indicate derivatives with respect to ~~rnen~ y and 2. For the existence of a 
nontrivial solutiong, (y) the determinant of system (4.11), which is linear and homo- 
geneous with respect to g,and g,‘, must be equal to zero. Hence, we obtain 

h,” (z) h, (z) = h,,” (2) (4.12) 

We denote the smallest positive root of .Eq. (4.12) by’&. In this manner the bouhdary 
r” for k = l/s is the straight line ,z = 2,. From the first equation (4.11) we find 

gn (Y) = exp I - 4’ (2,) Y i hn (al (4.13) 

Here the condition g, (0) = 1 was used. This condition results from the boundary 
condition (4.7) for y = 0 and from the relationship (4.19). Hence, in the region D,” 
which is determined by the condition 0 & z < z,, the solution 9 (y, z) is given by 
Eqs. (4.10). (4.13) in which the function’ h, (2) is determined by Eqs. (4.5). (4.6) and 
the value 2, is determined by Eq. (4.12). ‘In the region Bs”, given by the inequality 
z > z,, we have 9 = G” (z - y) in accordance with (4.7). 

Let us set z = z, and equate the solution in regions D,’ and D,O. We obtain 

h, (2,) gn (Y) = Go (2, - y), Y&9 
Using (4.13). we find from the above 

(=“(x) = h&,)expt~,‘(z,)(s-- z,)/h,(z,,)], =<z, (4.14) 

For the determination of function G” (2) when z > z, we take advantage of the bound- 
ary condition (4. ‘7) for y = 0. Denoting the argument of function G” by z, we obtain 

G” (2) = h, (z), z,,z, (4.15) 

Equations (4.14) and (4.15) completely describe the function Go and by the same token 
the solution in the region L&O. In this manner, the solution of the problem for k = ‘/z 
is fully constructed, and it is pbsible to show that it satisfies all condition (4.7). By 
equations (4.3) we can return to the initial variables. 
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If the variables z, z, p are such that z < z,, the control must be equal to zero (region 
Dlo, see Sect. 3). If however z > z,, the impulsive control should be carried out. In this 

r, 

u”, 
0 

J 

/ 

/ 
G 

/ L 
Z 

connection for 2, < z < zn + Y the impulse must trans- 
fer the system to the state z = z, and for z* p ZK!- y to 
the state y = 6 . In the latter case the entire con&o1 

capability is expended at once. 

In Fig. 2 the regions DIO, Dto and the straight lines 
Y - z = const are represented. On these straight lines 

the function II, is constant in the region D,O and the 
phase point moves along these lines during impulsive 
controL 

Fig. 2 

(4.6). (4.12). (4.13) we find for 

As an example let us examine the particular case 
k = ‘12, n = 2, which corresponds to a quadratic func- 
tion F (I) in the criterion (1.3). From relationships 
n-3 

h2 (z) = zz + 1, 12 = i, g.’ (y) = e-u (4.16) 

The solution of (4. lo), (4.14), (4.15) for n = 2 , taking into account (4.16). assumes a 

simple form 

$ (y. 2) = (z2 + i)e-” (z < i), II, (y, Z) = 2ezTi’-’ (1 < ,- < 1 + y) 

$ (Y, z) = (z - Y)2 + i (z > i + Y) 

In the general case (k # 0, k # I/*, m # 1) the problems considered here, can be solved 

numerically, for example by the method of finite differences ; some computations of this 
type are carried out at the Institute of Problems in Mechanics. Academy of Sciences, 

USSR. 
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